By: Edward Egros

run

No Need to Establish the Run

David Johnson

Arizona Cardinals running back David Johnson (left) may understand the importance of balancing between rushing and passing about as well as anybody. Last season, he finished with the most touches, all-purpose yards and rushing/rec touchdowns of anyone in the NFL. For an encore, his head coach says he wants Johnson to average 30 touches per game.

It's one thing to strike the right balance between how to use Johnson as a rusher and as a receiver; it's another to make these decision relative to the time of the game. Conventional wisdom in football has always championed the idea of "establishing the run"; meaning no matter how long it takes to create an effective run game, it should be a point of emphasis early in a contest. More recently,
rushing plays are called less frequently, regardless of what the clock reads. Knowing this recent trend, there is a way to explain why, at least analytically, attempting to establish the run is unnecessary.

I took NFL play-by-play data from the 2010 thru the 2015 seasons. This information included which team won and lost. Then, using only rushing plays, I summed up the rushing yards each team had per quarter, per game (in this analysis, I am not including overtime rushing yards because of how infrequently they appeared, but also how much they swayed the results because so many rushing yards will essentially end the game). Using a
logit regression with "win" as a binary dependent variable and rushing yards per quarter as my explanatory variables, here is the output:

=========================================
Deviance Residuals:
Min 1Q Median 3Q Max
-2.8447 -0.9786 -0.5544 1.0545 2.0701
Coefficients: Estimate Std. Error z value Pr(>|z|)
(Intercept)
-1.747385 0.105946 -16.493 < 2e-16 ***
yards.gained.1
0.006508 0.001922 3.386 0.000708 ***
yards.gained.2
0.007091 0.001953 3.632 0.000282 ***
yards.gained.3
0.015546 0.001910 8.137 4.05e-16 ***
yards.gained.4
0.035783 0.002156 16.594 < 2e-16 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 4251.8 on 3066 degrees of freedom
Residual deviance: 3711.2 on 3062 degrees of freedom
AIC: 3721.2 Number of Fisher Scoring iterations: 4
==========================================

First, all of these variables are statistically significant at the 99% level, which makes logical sense. The more yards a team has, no matter the type, the likelier they are to win. Second, there is a direct relationship between the time of the game and the magnitude of the coefficient. In other words, as the game goes on, the more important rushing yards are to the game's outcome. Having the largest coefficient for the fourth quarter makes sense because teams that are leading are trying to take time off the clock, and rushing makes that motive easier to fulfill. However, that the third quarter has a greater magnitude than the first half could suggest there is no statistical advantage to "establishing the run".

It is also important to convert these coefficients to
odds ratios to know how important each rushing yard is to winning. Specifically, an extra first quarter yard increases the odds of winning by a factor of 1.0065. In the second quarter, it's 1.0071, a small difference. In the third quarter, it is 1.0157 and in the fourth, it is 1.0364.

There may be a value to wearing down a defense by running the ball earlier in a game, but from this data and regression, it is not captured. It may also be possible a running back needs several carries before knowing how to dissect a defense later in a game; but again, this idea is not captured aggregately. Again, establishing the run may not be as crucial an idea as originally thought.

However, one conventional bit of wisdom that is reflected is the idea a team controls the game more effectively by running the ball later in the contest. Quantifying how a team controls a game can be captured using a study like this one. In fact, I plan to use this analysis in my weekly Cowboys postgame graphics that explain why Dallas either won or lost a particular contest. I will go over these upgraded graphics in a later blog post.

(Special thanks to
Luke Stanke for providing the data and helping me with the code!)